
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whtn Dmim Enfrtd)

REPORT DOCUMENTATION PAGE
t. REPORT NUMBER

83-7

2. 30VT ACCESSION NO

4. TITLE (mnd Sublltit)

A NOTE ON A COMBINED APPROACH
TO THE PALLET LOADING PROBLEM

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5 TYPE OF REPORT « PERIOD COVERED

Technical

6. PERFORMING ORG. REPORT NUMBER

83-7
7. AUTHORf*;

Thorn J. Hodgson
Diana Swift Hughes
Louis A. Martin-Vega

8. CONTRACT OR GRANT NUMBERf.;

(Air Force) F01600-80-D0299

(Navy) N00014-76-C-0096

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Industrial and Systems Engineering
University of Florida
Gainesville, FL 32611

to. PROGRAM ELEMENT. PROJECT, TASK
AREA a WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

A. F. Logistics
Mgmt. Center

Gunter AFS, Alabama

12. REPORT DATE

Office of Naval Research
Arlington, VA

February, 1983

14. MONITORING AGENCY NAME & ADDRESSC</ dllUrtml from Controlling Oltico)

13. NUMBER OF PAGES

17
15. SECURITY CLASS, (ot thia report)

UNCLASSIFIED

15«. DECLASSIFI CATION/DOWN GRADING
SCHEDULE ,, ,.

N/A
16. DISTRIBUTION STATEMENT (ot thim Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (ol the mbtlrmcl entered In Block 30, II dlllerent Irom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverie elde II neceeeary and Identity by block number)

Pallet Loading
Stock Cutting
Dynamic Programming
Packing

20. ABSTRACT (Contlnum on r»v«f«« •/(/• // necemaary and idBntlty by block number)

In a recent paper Hodgson developed a dynamic programming based heuristic
for the two-dimensional pallet loading problem. This note presents improve-
ments to that procedure which have resulted in reductions of CPU run times of
up to 20 to 1 as well as drastic lowering of memory requirements. Other
implications of the improvements are also discussed.

DD ,^ FORM
AN 7J 1473 EDITION OF t NOV 6S IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dmtm Entered)

UBnm
RESEARCH REPORTS 0iVf|l9|t
NAVAL POSTGRADUATE ^^l
MONTEREY. U^LWmm 9IWfl

RESEARCH
REPORT

Industrial S Systems
Engineering Department

University of Florida
Gainesville, FL 32611

A NOTE ON A COMBINED APPROACH
TO THE PALLET LOADING PROBLEM

^search Report No. 83-7

by

Thorn J. Hodgson
Diana Swift Hughes

Louis A. Martin-Vega '

February, 1983

Department of Industrial and Systems Engineering
University of/porida LL'VVX^*-<S>^^

Gainesville, Florida 32611 ^

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This research was supported in part by the U.S. Air Force, under
contract number F01600-80-D0299, and by the Office of Naval
Research, under contract number N00014-76-C-0096.

THE FINDINGS OF THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL
DEPARTMENT OF THE AIR FORCE OR NAVY POSITION, UNLESS SO DESIGNATED
BY OTHER AUTHORIZED DOCUMENTS.

TABLE OF CONTENTS

^ PAGE

Abstract i

Introduction 1

The Pallet Loading Procedure Reviewed 2

Computational Improvements 6

Experimental Computation 7

Reference 13

r

A Note on a Combined Approach
to the Pallet Loading Problem

Abstract

In a recent paper Hodgson developed a dynamic programming based heuristic

for the two-dimensional pallet loading problem. This note presents improve-

ments to that procedure which have resulted in reductions of CPU run times of

up to 20 to 1 as well as drastic lowering of memory requirements. Other

implications of the improvements are also discussed.

Introduction

In a recent paper, Hodgson [1] developed a dynamic programming based

heuristic for the two-dimensional pallet loading problem. In the course of

evaluating the computational results for the procedure, it was noted that the

quality of solutions obtained by the procedure (percent coverage of the pallet

area) was very good. However, the CPU seconds required to compute solutions

were larger than would be desireable for application in a real-time environ-

ment. It was observed that there were elements of the procedure that might be

enhanced in order to improve computation times. The results of experimental

computation indicated that computation time was extremely sensitive to the

quality of a bounding function that was used in the procedure. It was con-

jectured that it might be possible to obtain significant computational

improvements if the quality of the bounding function was improved even

slightly.

In the following, the dynamic programming based pallet loading procedure

is reviewed along with the development of the bounding function. The results

of the experimentation with heuristic knapsack procedures is then discussed.

A fundamental improvement in the bounding function is developed and another

improvement taken from observations of real-world pallet loaders and furniture

movers is presented. The computational experiments from the previous paper

[1] are duplicated and the results compared.

The Pallet Loading Procedure Reviewed

The reader should note that in the interests of brevity, details of the

procedure are not given. The interested reader is referred to the original

paper [1]. The key element of the dynamic programming based procedure is that

the pallet can be partitioned by a rectangular section (see Figure 1). If a

good load can be found for the left-hand sub-pallet (x,y) (upper left-hand

rectangle of Figure 1), then a good load for the left-hand sub-pallet (x',y')

might be found by packing boxes into the shaded portion of Figure 1 (i.e.,

sub-pallet (x',y') minus sub-pallet (x,y)). In this way it would be possible

to build up to the entire pallet (L,W). In order to consider all possible

ways of building up to loading the entire pallet the concepts of dynamic pro-

gramming are used. The following definitions are useful.

N = Set of all boxes to be considered for loading (of
size n). .

I = Subset of the boxes, 1,2,...,n.

J - Subset of the boxes, l,2,...,n.

x,y = Two dimensional index specifying a rectangular
partition (Figure 1).

f(x,y,I) = The maximum area of the left-hand subpallet of
x,y which can be covered using the subset of
boxes I.

h(x,y,x',y',1) = The maximum area of the left-hand sub-pallet of
x',y' less the left-hand sub-pallet of x,y
(shaded area of Figure 2) which can be covered
using boxes from the set I. v.

The dynamic programming equation for the pallet loading problem can be

given as follows:

f(x',yM) = max{f(x,y,J)+h(x,y,x',yM-J)} (1)
X ^ x'

X < y'

J ^ I .

r

(0,0)

(L,W) (

Figure 1: Pallet with Two Rectangular Partitions (x,y) and (x',y')

\ I

In order to limit the size of the state space only one partial solution

f(x,y,I) for each partition x,y is saved. That is,

f'(x,y) = max{f(x,y,I)}.
I . ; "

The function h(x,y,x',y',1) itself requires an optimization in order to pack

the L-shaped area (shaded area of Figure 1). This is done simply by breaking

the L-shaped partition into rectangular areas and filling each area using a

linear dynamic programming knapsack procedure.

In order to eliminate unnecessary computation in the procedure a bounding

function is used:

B(L,W) = the maximum possible coverage of a pallet
(sub-pallet) of length L and width W using
the set of boxes N.

The bounding function is developed by solving relaxations of the pallet

loading problem. In the present case, two different relaxations are used.

The fi rst is' -^ -

n
C (x) = maximize V i. x. + w.x
n^ ' • ^1 "1 1 1 n+1

n
s.t. y Ji. X. + w.x . < X

.^,11 1 n+1 —

x^ . x^^. =0 i = 1,2,...,n

, - X. = 0,1 i = 1,2,...,2n

Note that ■ %.. = length of box i, and

w. = width of box i. J

The function Cp{X) specifies the maximum linear coverage that is possible on

the line segment [0,X] choosing from the set of boxes l,...,n (positioning

them by either length or width). For a pallet (or rectangular sub pallet) of

size L by W, an upper bound on the maximum area coverage possible is Cp(L)*Cp(W)

The funcion C^(X) is computed in a straight forward fashion using a dynamic

programming knapsack routine.

The second relaxation is

n
D (Z) = maximize I J!.^ • w. . x.

n
s.t. y JL . w. . X. < Z

i=l ^ ' ' -

x^ = 0,1, i = l,2,...,n

The function D^(Z) specifies the maximum area coverage that is possible

on a pallet of area Z, choosing from the set of boxes l,...,n, and assuming

that the boxes can be "mashed" into any shape while maintaining constant area.

For a pallet (or rectangular sub-pallet) of size L by W, an upper bound on the

maximum area coverage possible is D^(L*W). The function 0^(1), again, is

computed in a straightforward fashion using a dynamic programming knapsack

routine. The bounding function used by the procedure is

B(L,W) = min{CjL)*C^(W),D^(L*W)}. (2)

Computational Improvements

The first attempt at computational improvement was to incorporate a

stronger bounding function. The bounding function can be improved by making

the following simple observation:

B(L,W) = D^(Cr,(L)*Cn(W))lmin{C^(L)*C^(W),D^(L*W)}. (3)

Substituting equation (3) for equation (2) results in a substantial reduction

in computational effort. Limited experimentation resulted in reductions of up

to 4 to 1 in CPU time.

A second attempt at computational improvements came from our observations

of people loading pallets in the real world. A typical approach in loading a

pallet is to take the largest box that has to be loaded and place it in one

corner. Then the pallet load is built around the corner box. In the previous

procedure every box in the set is a candidate to be placed in the corner,

thereby greatly increasing the combinatorics involved in loading the pallet.

This was noted previously [1] and the original version of the procedure

allowed the user to dictate the corner box, if so desired. In the present

case, the procedure was modified so that, unless the user desires otherwise,

the box with the largest area coverage is always placed in the corner.

S

Experimental Computation

The improved pallet loading procedure was programmed in Fortran IV and

implemented on the University of Florida IBM 3033. Problems with a data set

of 30 boxes were generated with box dimensions uniformly distributed (integer

values only) between upper and lower bounds as indicated in Tables 1, 2, and

3. Table 1 contains computation times in virtual seconds. Table 2 contains

the number of undominated partial solutions generated by the dynamic

program. Table 3 contains the percent area of the pallet covered. Each entry

of the tables is the average of five problems. The experimentation duplicates

that of the previous paper [1]. The upper left-hand entries of each box are

from the previous experimentation. The lower right-hand entries are from the

present experimentation.

As with the previous experimentation the computation times are clearly

dependent on both pallet size and the range of box dimensions (Table 1). What

is interesting is the overall reduction in computational effort. The relative

reduction in computation increases with both the size of the problem and the

difficulty (range of box sizes) with a maximum reduction of almost 20 to 1.

It should be noted that it is not possible to compare times for the most

difficult problem sets since the original procedure was not capable of solving

the problems in 30 seconds of computation.

The number of undominated partial solutions (a measure of the storage

requirements of the procedure) is given in Table 2. The reductions obtained

are due solely to placing only one candidate box in the corner to start the

procedure as the improved bounding function does not affect the number of

undominated solutions. While the growth in requirement for computer storage

is also dependent on pallet size and the range of box dimensions, reductions

ranging from the order of 10 to 1 or better for the smaller pallet sizes and 3

z
O
o
UJ

Q;

t/)

S3

o

to

I \ \, ■~"^^— S- OO V CM
\ 1—1 \ Ln \ O \ OD \ 00

\ m \ o \ 00 \ Ln \ >*
CD \ (XJ \ ■=d- \ Ln \ CO \ 00

CZ> CO \ \ \ \ \ CM
CD \ \ \ \ \
O X \ L 1 V \ V > V \
CO \ r^ \ \ \ \
o r^ \ OO \ ^ \ \ \
o o \ in \ ^ \ \ \
.—1

in

\
OO
r-H
\

Ln
CM
\

•K
\

M

\
\ UD

\ r^ V o \
\ 00 \ LD \ 'd- \ en CM

o
o 00

\ lO \ 00 \ oo \ U3 1—1

\ \ \ 1—1 \ r-i r^
o \ \ \
«=1- X \ V > V V
UD \ \ \ \
O \ \ \ \
00 o

lO

1—1 \

CO

CO

OO
OO

UD
\

O

CD
\

¥
\

■21 \ VO \ 1—1
\ 00 \ UD \

o \ Ln \ o \ 00 \ UD \ en
1—1 \ CM \ <=* \ Ln \ CO \ f^
OO o \ • \ • \ • \ • \ •
-z. CD in \ \ \ \ \ OO

<C UJ o \ \ \ \ \
UJ 2: 00 X V \ \ ^L
o: 1—(>* \ \ \ \
<i: Q o

00 \ o \ OO OO \ \
h- to \ m \ 1^ I—1 \ \
UJ • \ • \ • • \ \
_i \ 1—1 \ CM LT) \ ■K \

> \ N \
V "v s, \ k

\ OO \ r-> \ UD \ ^ \ r^
\ 1—1 \ >=1- \ 1—1 \ en \ 1—t

\ .—1 \ 1—1 \ CM \ (NJ \ o
o \ • \ • \ • \ • \ •

o Ln \ \ \ \ \ .—1

o > V \ L \ > \
un X \ \ V
CO Ln \ o \ ^ r--. UD \
o Ln \ Ln \ UD OO OO \
r^ 1—1

\

CO

\

00 ^ 1—1

o
CvJ

\
\ lO \ ^ \ t\ \ ^ \ en
\ Ln \ «^ \ OO \ o \ 1—1

\ 1—1 \ CM \ OO \ UD \ OO
\ o \ O \ o \ O \ OO

) o \ \ • \ • \ • \ •
o ■* \ V > V \ I \ V 1 ^
o \ \ \ \ \
>* X \ \ \ \ \
CM \ \ \ \ \
O en \ r-(\ o \ OO \ CM \
(£> OO \ CO \ ^ \ en \ 1—1 \

o
\

o
\

r-H

\
,—1

\
1—1

0^ \
s- V \ \ \ V
0) \ CM \ OO \ "* \ Ln \ o
Q. \ CM \ CM \ CM \ CM \ OO
CL \ \ \ \ \

OJ ZD \ \ \ \ \
N <y) \ \ \ \ \ -(— -a > ̂ > ̂ > V > V \
I/O

zs \ \ \ \ \
X o \ \ \ \ \
o S- CO \ \ \ \ \
CQ O) \ \ \ \ \

S 00 \ t-^ \ UD \ Ln \ o \
o ,—(\ I—1 \ 1—1 \ «—1 \ 1—1 \
_J ^ \ \ 1 \

1/1
-o
c
o
u
O)

+->

o
OO

■CD
CU
>

o
•X

8

C^J

00

:

C\J \

CM

CO
en \

o
1—1

t—1 \

O ^

\

o
1—1

CO
o C\J \ 00 \ LO \ r--. \ CM

CD CO \ \ \ \ 1—1

O \ \ \ \
O X
CO
o
o

CO

Ln
LO \

>
O

CD
Ln
O
1—1

\

Ln ^

■—(
Ln
Ln
1—1

\ \

\

\

\ CO o \ 00 \ o \ o

64
00

80

X
80

\

CO

00

\

o

00

■!:J-
r-l

\

en
LO

00
CO
CM

\

\

00
00

en
CM

\
\

CO
o
LO

OO

CM \ «^
\

r-~
\

cri
\

+
\

\, \ \ \
z: \ CM \ CM CO \ CM \ o
o \ \ . • \ • \ •
1—t \ r^ \ ro r^ \ o \ CO
t/1 o \ Ln \ CJ^ ^ \ o \ "d-
■z. O lO \ \ ,—1 \ CM \ 'd-

tX. U-l o \ \ V \ \
uj s: 00 X s, \ \ \

o
CO 1-^ \

in

\ 1—1
\

LO

LO \
t— o \ 00 \ en \ LO \
LlJ C\J \ CO \ Ln \ 1— ■K \
_J \ \ \ \
^

\ > ^ i
I \ \ V \

Q.

\ <^ \ o \
CO \ LO

\
o

o \ CM \ CO \ LO \ Ln \ o
\ t—I \ .—I \ CM \ CO \

I—1

o V > V > V ^ \ I
IT) X \ \ \ \

o CM

Ln

\

CM

CM

\

00

00
CO
CM \

LO

CO

CM

CM

CO \

k CM

CT, \

LO

.—1 \

00

LO
.—1 \

LO

CT)
<—1 \

o \ \ \ \ \ .
o ^ \ V \
o \ \ \
^ X \ ^ \ CO o \
CM
o o \ o

Ln \ ^ CO \
U3 r~^ \ r~- CO \ r~^ CM \

Ln \ en 1—1 \
1—(

\
S- \ \ \ \ \
QJ \ C\l \ ro \ ^ \ Ln \ o
CL \ CM \ CM \ CO \ CM \ CO
Q- \ \ \ \ \

Q; ZD \ \ \ \ \
rsi l/l \ \ \ , \ > ̂

■o \ \
oo

:3 \ \
X , o \ \
o ^, c" \ \

en 0)
00 r-. LO \ Ln o \

o I—t (—t .—1 \ t—1
I \

^ I
\ ^ \ \

LO
-a
c
o
o

(13

4-»

T3

>
o
LO

o

■K

•at
I-

2

8

I
CO

CO

\
■ ■ ■

\

\ \ CO
0 \ CO \ t^ \ CO \ 00

80
00

00

X

80

LT)
cn

0
r—1

\

\

CTl
CTl

\

\
00
CTl

CTv
cn

\

\

cn
cn

\

\

en
cn

\
*—H

CT) \
0
0 \ C3-1 \ •X \ •K \

cn \ 1—1 \ 0-1 \ \ \

\ \ \ 1—1 \ CO
\ 0 \ CTl (Ti \ 00 \ CM

64
00

80

X

80

\

0
0

0
1—1

\ CT.

CTl
cri

Ln
en

cn
cn

\

\

CO

cn
en

\
\

en
cn

\
\ CTl \ en \ cn \ * \

</1

.—1 \ cn \ CTv \ cn \ \

V \ \ \
z: \ \ \ Ln \
o \ 0 \ 0 0 \ CO \ Ln
t-H \ 0 \ 0 0 \ • \ •
oo 0 \ ,—1 \ .—1 \ t—1 \ cn \ en
■z. 0 vo \ \ \ cn \ cn

<: uj 0 \ \ V \ \ ̂
m 2: CO X v \ \ \
Q: >-• ^ \ \ \ \
ca: Q 0

CO 0 \ 0 \ 0 0 \ \
1— 0 \ 0 \ 0 0 \ \
LU .—(\ .—1 \ r-H T—1 \ ^ \
_l \ \ \ \
_J \ > \ N

ex.

\ 00 \
\—1

U3 \

Ln

CM \
1—1

00 \
,—1

cn

35
00

X
50

\

\
\

CO

\
\

cn
\

cn
\

cn

0
1^

Ln

Ln

\
00
00
\

00
en

0

cn
en

cn
cn \

\ 0
0 \

UD

cn

UD

cn \
0

cn \
0

0 ^
\ 1—1 \ CTl cn \ cn \ CTi

\ V
\ > V.

0 \ \
'd- X \ \
CM \ Ln \

0 0 \ 0 0 0 \
UD 0 \ 0 0 0 cn \

1—1

\
.—1 1—1 t—1 cn

\

S- \ CM \ n \ •^ \ Ln \ 0
O) \ CM \ 00 \ CM \ CM \ CO

Q. \ \ \ \ \
QJ _ ^) \ \ \ \ \
N Ul \ \ \ \ > I

T3 \ \
OO

3 \ \
X s- 0 \ \
0 0 CQ \ \

D3 s CO \ r^ 10 Ln 0 \
0 f—t \ I—1 f—1 r-H 1—1 \
_l ^ ^ ^ \ -!

I/)

e
o
o

4->

o
CO

>
o
CO

o
2:

10

to 1 for the larger pallet sizes have been obtained thereby significantly

enhancing the potential applicability of the procedure on computers of limited

storage capacity.

The quality of the solutions for the randomly generated problems is

measured by the percent of the pallet area covered (Table 3). Four out of the

five pallet sizes used in the experimentation (60 x 40, 80 x 60, 80 x 80, and

100 X 80) were chosen so that there would be a high likelihood of the exis-

tance of an extremely good solution. Across all comparable solutions there

was an average loss of 0.26% in terms of area coverage. This is caused by the

limitation imposed by placing the largest box in the corner. The effect is

greatest in the smallest pallet size (60 x 40), as might be expected. Con-

sidering only the larger pallets (80 x 60 and larger), the loss in area

coverage is 0.054% on the average. In our interactive experiments, where the

user was allowed to choose the corner box, the loss in area coverage is

virtually zero.

One pallet size used in the experimentation (70 x 50) was chosen so that

there would not be a high likelihood of good solutions. With all boxes having

dimensions of 20 x 20, the best possible coveage would be 68.6%. With box

dimensions randomly distributed from 18-22, the best possible coverage (from

an infinite set of boxes) would be 83.0% (versus 78.9% attained). With box

dimensions randomly distributed from 17-23, the upper bound would be 92.0%

(versus 86.1% attained), and for all other problems the upper bound would be

100%. It might be noted that for the 18-22, and 17-23 problems (and the 18-22

problem on a 100 x 80 pallet), there is actually an increase in the percent

coverage. This is because the original version of the knapsack subproblem

considered only 15 boxes at a time. The current version was expanded to

consider up to 30 boxes at a time.

11

In synopsis, it is important to point out that the results presented in

Table 1 have been based on box sizes with uniformly distributed dimensions.

Real loading problems seldom have uniformly distributed box dimensions, but

rather tend to have lengths, widths and heights that cluster at particular

values. Generally, for real problems, the bounding function, generates even

stronger bounds than those obtained in our experimentation resulting in even

greater reductions in computation times. The results in Table 2 demonstrate

the effect of limiting the choice of the candidate corner box and how this has

resulted in reduced storage requirements. Finally, Table 3 shows that the

price paid in terms of the quality of the solutions obtained is relatively

insignificant, allowing one to conclude that the improvements are in fact a

significant step forward in terms of the use of the procedure in a real-time

environment. ^

12

Reference

[1] Hodgson, Thorn J., "A Combined Approach to the Pallet Loading
Problem", HE Transactions, Vol. H, No. 3, Sept., pg. 175
(1982).

13

